menu 简单麦麦
account_circle

音乐生成的深度学习技术-Deep Learning Techniques for Music Generation

帮助2571人找到了他们想要的文件
上传于 2020-03-06 39次下载 1495次围观
文件编号:6661
文件详情
标题(title):Deep Learning Techniques for Music Generation
音乐生成的深度学习技术
作者(author):Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet
出版社(publisher):Springer International Publishing
大小(size):12 MB (12671116 bytes)
格式(extension):pdf
注意:如果文件下载完成后为无法打开的格式,请修改后缀名为格式对应后缀



This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure.

The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.




Table of contents :
Front Matter ....Pages i-xxviii
Introduction (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 1-10
Method (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 11-13
Objective (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 15-17
Representation (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 19-49
Architecture (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 51-114
Challenge and Strategy (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 115-222
Analysis (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 223-241
Discussion and Conclusion (Jean-Pierre Briot, Gaëtan Hadjeres, François-David Pachet)....Pages 243-249
Back Matter ....Pages 251-284
-到底部了哦-
微信扫码支付
音乐生成的深度学习技术-Deep Learning Techniques for Music Generation
支付金额: 共计:¥0.0

添加收藏

创建新合集